

Advanced Space Propulsion Workshop

29 November 2012

Dan Guerrant and Dale Lawrence, University of Colorado, Boulder W. Keats Wilkie, NASA Langley Research Center, Hampton, Virginia

Heliogyro Description

Proposed by Richard MacNeal in 1968. NASA considered it for a Comet Halley rendezvous mission in the 1970s. Some additional design work done at Carnegie Melon during the 1990s and MIT in the 2000s.

CONCEPT:

 Several extremely long blades spun about a central hub

SAIL STIFFENING:

Centrifugal

STOWAGE/DEPLOYMENT:

- Stored on spools
- Deployed with centrifugal force

ATTITUDE CONTROL:

- Via cyclic and collective blade pitch maneuvers
- Similar to a helicopter

Heliogyro Maneuvers

Maneuver

Effect

Purpose

Collective

1/2 -Period Cyclic

1-Period Cyclic

Torque about spin (z) axis

Increase angular momentum during sail deployment

Spin axis precession torque

Attitude control

Generate in-plane thrust

Change thrust direction (faster then slewing entire S/C)

[MacNeal 1967, 1978]

Heliogyros: PROS and CONS

PROS:

- Spools make blades easy to stow and deploy
- Easier to scale to large sizes than square or disk sails
- Eliminates non-propulsive structure → less mass → higher acceleration/larger payload
- Propellantless attitude control

CONS:

- Difficult to accurately ground test (gravity ~70x > centrifugal force)
- Blade dynamic stability poorly understood
- Controlling blade twist is particularly difficult
- Expect very little material damping and stiffness in twist

The Membrane Ladder: Uncoupled Twist Finite Element Method

$$\sum M_{x} = J_{n} \ddot{\theta}_{n} = -J_{n} \Omega^{2} \theta_{n} + \frac{\sigma_{x_{n}} I_{n}}{\Delta x} (\theta_{n+1} - \theta_{n}) - \frac{\sigma_{x_{n-1}} I_{n-1}}{\Delta x} (\theta_{n} - \theta_{n-1}) + d \frac{1}{\Delta x} (\dot{\theta}_{n+1} - 2\dot{\theta}_{n} + \dot{\theta}_{n-1})$$

Coriolis and Euler terms are zero for pure twist in a rotating frame.

The Membrane Ladder's Assumptions: Uncoupled Twist Finite Element Method

$$J_n \ddot{\theta}_n = -K_{gyro_n} \theta_n + K_{cent_n} (\theta_{n+1} - \theta_n) - K_{cent_{n-1}} (\theta_n - \theta_{n-1}) + d \frac{1}{\Delta x} (\dot{\theta}_{n+1} - 2\dot{\theta}_n + \dot{\theta}_{n-1}) + M_{ext_n}$$

- No blade cambering
- No elastic torsional stiffness (only centrifugal stiffening)
- Linear material damping (stand-in for unknown damping)
- Linearize by small angle approximations. Reasonable because:
 - Gyroscopic stiffness (K_{gyro_n}) is 100 to 1000 times smaller than the centrifugal stiffness (K_{cent_n}) .
 - K_{cent_n} depends on the <u>difference</u> in pitch $(\theta_{n+1} \theta_n)$.
 - $(\theta_{n+1} \theta_n)$ is small.

High-performance, Enabling, Low-Cost, Innovative, Operational Solar Sail (HELIOS)

Sail material	Al/Mylar
Sail Thickness	2.54 μm
# of blades	6
Blade chord	0.765 m
Blade radius	250 m
Sail area	1148 m ²
Sail system mass	14.6 kg
Bus mass	4.9 kg
Total mass	19.5 kg
Sail reflectivity	0.85
Characteristic	0.5 mm/s ²
acceleration	
Spin period	3 min
Orbit	LEO/GTO

- *Characteristic acceleration is defined using solar radiation pressure at 1AU with the heliogyro's rotational plane normal to the sun.
- 0.007mm/s² for IKAROS, the only solar sail ever flown [Funase 2011]
- 0.07mm/s² for Dawn's ion drive [dawn.jpl.nasa.gov].

Settling Time Requirement

- One equatorial orbit raising scheme [MacNeal 1967] requires 4 maneuvers per orbit.
- We use a settling time goal of 1/8th of an orbit or 4 revs (12 min) for the HELIOS mission in a 1000-1400 km LEO.
- The most challenging environment for solar sails is equatorial LEO, but...
- There are more ride-share opportunities at this orbit.

PDFF twist controller performance at blade root

All maneuvers settle well within HELIOS mission requirement of 4 revolutions

Hanging-blade Experimental Setup

Goals

- Validate the membrane-ladder finite element model
- Estimate the material damping
- Qualitatively explore blade construction factors with several test articles:

Test		Width	Crumpled	Edge
Article		(in)		Reinforcing
1	1 mil Kapton	2	no	no
2	0.1 mil Mylar	2	no	no
3	0.1 mil Mylar	2	yes	no
4	0.1 mil Mylar	2	no	yes
5	0.1 mil Mylar	2	yes	yes

#1: 2", 1mil, Al Kapton, 4 Tape Battens

Sail:

• 3.85g

4 Battens:

- 0.24g
- 6% increase in total sail mass

Total:

• 4.10g

Fairly flat, but too thick and heavy

#2: 2", 0.1mil, Al Mylar, 4 Tape Battens

Sail:

• 0.39g

4 Battens:

- 0.30g
- 79% increase in total sail mass

Total:

• 0.70g

Unacceptable blade cambering/curl due to residual stress

→ Not tested

#3: 2", 0.1mil, Al Mylar, hand-crumpled

Sail:

• 0.39g

4 Battens:

- 0.30g
- 79% increase in total sail mass

Total:

• 0.70g

Crumpling randomizes the residual stress

 \rightarrow improved flatness

#4: 2", 0.1mil, Al Mylar, Edge Reinforcing

Sail:

• 0.39g

4 Battens:

- 0.30g
- 79% increase in total sail mass

Edge Reinforcing:

- 1.45g
- 375% increase in total sail mass

Total:

• 2.13g

Still a lot of cambering between battens

Huge mass penalty

#5: 2", 0.1mil, Al Mylar, Edge Reinforcing, Crumpled

Sail:

• 0.39g

4 Battens:

- 0.30g
- 79% increase in total sail mass

Edge Reinforcing:

- 1.45g
- 375% increase in total sail mass

Total:

2.13g

Flattest specimen
Significant mass penalty

Experimental and theoretical FRFs at the blade midpoint, Article #3 (crumpled)

Flap response with flap actuator Twist response with twist actuator

5.5% RMS difference in modal frequency from theory (first 5 modes)

11.5% RMS difference in modal frequency from theory (first 4 modes)

#	Material	Crump.	Edge Reinf.	Mass (g)	Agreement with Theory		1 st Mode Damping	
					Flap	Twist	Flap	Twist
1	1mil Kapton	no	no	4.10	N/A	80%	N/A	3.3%
2	0.1mil Mylar	no	no	0.70	N/A	N/A	N/A	N/A
3	0.1mil Mylar	yes	no	0.70	95%	89%	5.2%	17.5%
4	0.1mil Mylar	no	yes	2.13	92%	76%	4.4%	5.0%
5	0.1mil Mylar	yes	yes	2.13	96%	88%	3.5%	6.1%

- The HELIOS design can achieve mission-enabling accelerations and is a good stepping-stone for future heliogyro missions.
- Blade pitch control is not as difficult as originally assumed.
 - A blade pitch motor at the root with a PDFF controller is effective at controlling blade twist.
 - Experimental results agreed surprisingly well with the FEM theory.
 - Damping is higher than expected.
- Blade construction is a significant challenge.
 - Residual stresses cause significant curling in ultra-thin membranes.
 - Crumpling is an easy, mass-efficient way to improve flatness, but it lowers optical efficiency.

Acknowledgements

- Jay Warren (NASA LaRC) and Chad Gibbs (Duke) for corroborative theoretical work and experimental guidance.
- Jer-nan Juang (National Institute of Aerospace) and Lucas Horta (NASA LaRC) for system identification expertise.
- Maggie Nagengast and John Thomson (NASA LaRC Summer Scholars) for their assistance building test articles and conducting the experiments.
- A NASA Office of the Chief Technologist Space Technology Research Fellowship supported this work.

- Funase, Ryu, et al., "Fuel-free and Oscillation-free Attitude Control of IKAROS Solar Sail Spacecraft Using Reflectivity Control Device", 28th International Symposium on Space Technology and Science, Okinawa, Japan, 2011
- MacNeal, R. H., "The Heliogyro, An Interplanetary Flying Machine," NASA Contractor's Report CR 84460, June 1967.
- MacNeal, R. H., "Structural Dynamics of the Heliogyro," NASA CR-17445A, 1971.
- MacNeal, R. H., John M. Hedgepath, "Helicopters for Interplanetary Spaceflight." 34th Annual National Forum of the American Helicopter Society, May 1978
- Wilkie, W. K., et al. "The Heliogyro Reloaded." *JANNAF 5th Spacecraft Propulsion Subcommittee Joint Meeting*, December 2011.
- Guerrant, D., D. Lawrence, W. K. Wilkie. "Heliogyro Solar Sail Blade Twist Control," *35th Annual AAS Guidance and Control Conference*, 3-8 February, 2012, Breckenridge, Colorado.
- Guerrant, D. and D. Lawrence, "Heliogyro Solar Sail Blade Twist Stability Analysis of Root and Reflectivity Controllers," *AIAA Guidance, Navigation and Control Conference*, August 2012, Minneapolis, MN.

Questions?

Variation of Damping with Pressure

Flap Response, Flap Actuator

Twist Response, Twist Actuator

